
Intelligent coding metasurface holograms by
physics-assisted unsupervised generative
adversarial network
CHE LIU,1,2 WEN MING YU,1,2 QIAN MA,1,2 LIANLIN LI,3 AND TIE JUN CUI1,2,*
1Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China
2State Key Laboratory of Millimeter Wave, Southeast University, Nanjing 210096, China
3School of Electronic Engineering and Computer Sciences, Peking University, Beijing 100871, China
*Corresponding author: tjcui@seu.edu.cn

Received 30 November 2020; revised 4 February 2021; accepted 6 February 2021; posted 8 February 2021 (Doc. ID 416287);
published 31 March 2021

Intelligent coding metasurface is a kind of information-carrying metasurface that can manipulate electromagnetic
waves and associate digital information simultaneously in a smart way. One of its widely explored applications is
to develop advanced schemes of dynamic holographic imaging. By now, the controlling coding sequences of the
metasurface are usually designed by performing iterative approaches, including the Gerchberg–Saxton (GS) al-
gorithm and stochastic optimization algorithm, which set a large barrier on the deployment of the intelligent
coding metasurface in many practical scenarios with strong demands on high efficiency and capability. Here, we
propose an efficient non-iterative algorithm for designing intelligent coding metasurface holograms in the context
of unsupervised conditional generative adversarial networks (cGANs), which is referred to as physics-driven varia-
tional auto-encoder (VAE) cGAN (VAE-cGAN). Sharply different from the conventional cGAN with a harsh
requirement on a large amount of manual-marked training data, the proposed VAE-cGAN behaves in a physics-
driving way and thus can fundamentally remove the difficulties in the conventional cGAN. Specifically, the physi-
cal operation mechanism between the electric-field distribution and metasurface is introduced to model the VAE
decoding module of the developed VAE-cGAN. Selected simulation and experimental results have been provided
to demonstrate the state-of-the-art reliability and high efficiency of our VAE-cGAN. It could be faithfully expected
that smart holograms could be developed by deploying our VAE-cGAN on neural network chips, finding more
valuable applications in communication, microscopy, and so on. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.416287

1. INTRODUCTION

Electromagnetic (EM) metasurfaces use periodic or quasi-
periodic macroscopic basic units to simulate the atoms or mol-
ecules on the microscale of traditional material science. These
macroscopic basic units could interact with external electric
fields via resonance effects and express unique EM properties
[1–6] to realize various novel functional devices such as cloaks
[7–10], concentrators [11], illusion optics devices [12,13], spe-
cial lenses [14,15], and diffuse reflections [16]. Recently, a series
of special EM metasurfaces called coding, digital, and program-
mable metasurfaces [17] (‘coding metasurfaces’ for short in the
remainder of this article) have gained more attention due to the
unique methods for manipulating the EM waves. By encoding
the phase responses of the metasurfaces as digital numbers ‘0’ or
‘1’, the EM property of each meta-unit in the coding metasur-
faces could be switched in real time when controlled by a field-
programmable gate array (FPGA), which allows people to

design metasurfaces in digital space rather than the analog do-
main. Further, the digital representation ofmeta-units could link
the EM space and digital world and has been widely used in
manipulating amplitude [18,19], polarization [20–22], and
orbital angular momentum [23–25], yielding the concept of in-
formation metasurfaces [26–29] and many other novel applica-
tions [30–33].

With the development of communication technology, peo-
ple need to deal with more and more information in daily life,
which adds the burden of the whole society and promotes the
development of artificial intelligence (AI) to help people deal
with various information handling tasks such as speech recog-
nition [34–36], image recognition [37–39], automatic transla-
tion [40–42], and robot control [43–45]. The growth of AI has
also brought changes to the design of EM metasurfaces, espe-
cially coding metasurfaces. The digital representation of the
coding metasurfaces makes it more convenient to put AI tech-
nology into the design of the meta-unit states [46–48] and has
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already sprung out various interesting applications such as the
smart system [49], high-resolution imager [47,50], and recog-
nizer [51].

Despite the wide usage of AI in coding metasurfaces, the
design of meta-unit states for holographic imaging by coding
metasurfaces still rests on iteration optimization algorithms like
the Gerchberg–Saxton (GS) algorithm [52,53] or greedy algo-
rithm [54]. Recently, a valuable trail has been made for using
supervised deep neural networks (DNNs) to recover holograms
from the generated speckles distorted by a thin diffuser [55].
However, the demand for thousands of training samples ac-
quired by real measurements remarkably increases the cost in
the usage of this supervised DNN. Here, we propose a new
method based on AI or deep learning that could rapidly gen-
erate the coding pattern (metasurface hologram) of the 1 bit
coding metasurface when a target holographic image is given.
The deep learning structure composed of unsupervised varia-
tional auto-encoder (VAE) and conditional generative adversa-
rial networks (cGANs) is presented in our method. The use of
VAE [56], as an unsupervised algorithm, could remarkedly re-
duce the time consumption for the preparation of training data,
and the EM propagation model described by the rigorous
dyadic Green’s function (DGF) [53] is used to make the
VAE structure possible while keeping the physical interpretabil-
ity. We merge the Wasserstein distance [57–59] [by the form of
Wasserstein GAN (WGAN) [60,61]] and mean square error
(MSE) in the design of loss function to make the distributions
of generated holographic images and target holographic images
closer. The structure of cGAN [62–64] is also used to avoid the
confusion of the generative network. We design a 40 × 40 one
bit coding metasurface working at the frequency of 35 GHz to
validate our intelligent method, and the simulation and exper-
imental results both validate the efficiency and reliability of the
proposed approach.

2. THEORY AND METHOD

A. EM Propagation Model
Figure 1(a) shows the sketch of our hologram system, which
consists of a 40 × 40 one bit coding metasurface controlled by
FPGA and a feed antenna radiating the EM waves in the fre-
quency range from 34 to 36 GHz. Each meta-unit on the cod-
ing metasurface could be switched between two opposite states,
radiating the EM waves with opposite phases of 0 or π, which
are represented by codes ‘0’ and ‘1’, respectively. The 1 bit cod-
ing metasurface is the imager that loads the metasurface holo-
gram, which can project the holographic image at the imaging
plane 30 cm away from it. The size of the metasurface holo-
gram and imaging plane is L1 � 152 mm and L2 � 200 mm.
Figure 1(b) shows the sketch of the meta-unit’s structure, whose
parameters are given by a � 3.8 mm, b � 2.2 mm, c �
1.4 mm, h1 � 0.813 mm, and h2 � 0.435 mm. The sub-
strate material of the metasurface is Rogers RO 4003C
(εr � 3.55, tan δ � 0.0027). A PIN diode is integrated on the
top layer of the metasurface element, connecting with two
metal patches, which offer the bias voltage control through
two via-holes. When the on/off state of diode is changed by
specific bias voltage, the surface electric field alters distinctively
to generate the reflected phase response with 180° difference.

The photograph of the hologram system is illustrated in
Fig. 1(c), which is a well-integrated system with the coding
metasurface controlled by the FPGA via an ethernet commu-
nication interface.

We accept rigorous DGF [53] as the basic computational
kernel of the forward propagation from the source currents
of meta-units to the near-field EM distribution:

~~G�r, r 0� �
�
~~I� ∇∇

k2

�
g�r, r 0�, (1)

where ~~I is a 3 × 3 dyadic identity matrix, r and r 0 are source and
field points, respectively, and

g�r, r 0� � e−jkR

4πR
(2)

is the free-space Green’s function, in which R � jr − r 0j. The
forward propagation formula could be represented as

E�r� � −jωμ
Z
V
dr 0

~~G�r, r 0� · J�r 0�, (3)

where E�r� and J�r 0� represent the electric field at the field
point and the current at the source point, respectively.
Owing to the discrete array form of the coding meta-units,
the source currents can also be expressed in a discrete form.
For convenience, we use a current element to represent a cod-
ing meta-unit and discrete the EM field into M points at the
same time. Then, Eq. (3) could reduce to

Fig. 1. (a) Sketch of our hologram system that consists of a 1 bit
coding metasurface loading the hologram and a feed antenna. The dis-
tance between the holographic imaging plane and coding metasurface
is 30 cm. (b) The meta-unit of the 1 bit coding metasurface. (c) The
side-looking photograph of our hologram system. The interval be-
tween meta-units on the coding metasurface is 3.8 mm, and the feed
antenna radiates the EM waves with frequencies from 34 GHz to
36 GHz.

B160 Vol. 9, No. 4 / April 2021 / Photonics Research Research Article



E�rm� � −jωμ
XN
n�1

~~G�rm, r 0n� · J�r 0n�, m � 1,…,M , (4)

where N is the number of coding meta-units. Further, we
organize the scalar components of E�rm� and J�r 0n� in
Eq. (4) for allm and n into column vectors E and J, respectively.
As we can see from Eq. (4), the relationship between E�rm� and
J�r 0n� is linear, and, hence, they could be connected with a com-
plex-value coefficient matrix. Then, Eq. (4) could ultimately
reduce to

E � W · J, (5)

where W is the coefficient matrix that links the source J and
field E. We only care about the vertical polarization EM waves
and the relative amplitude of the near-field EM distribution.
Hence, the current vector J could be described as

J � Jr⊙Jφ, (6)

where Jr is a complex-value vector and represents the current
part that is directly caused by the incident EM waves, which is
proportional to the incident electric-field values; ⊙ means
element-wise multiplication; and Jφ represents the current part
that is controlled by each coding meta-unit, which is a real-
value vector whose elements are ‘1’ or ‘−1’ to represent the
phase of 0 or π, corresponding to code ‘0’ or ‘1’. Then, Eq. (5)
could be rewritten as

E � W · Jr⊙Jφ � W · diag�Jr� · Jφ � Wr · Jφ,

Wr � W · diag�Jr�: (7)

Thus, the forward propagation process could be represented as
a form of matrix multiplication from a real-value vector Jφ to
the near-field electric-field distribution E. The design objective
of VAE-cGAN is to get the current vector Jφ to generate a tar-
get near-field electric-field distribution E, whose amplitude dis-
tribution represents a target holographic image.

B. Network Structure
Figure 2 demonstrates the network structure of the proposed
VAE-cGAN. It maily consists of two modules: generator and
discriminator. The generator is responsible for generating the
current vector Jφ when a target holographic image is given.

The binarization target holographic image is first input to
the Resnet34 [65] network of the generator, whose output
is activated by the hyperbolic tangent function and finally be-
comes a 1 × 1600 current vector Jφ, whose element value is near
‘1’ or ‘−1’, representing the code ‘0’ or ‘1’ in a 40 × 40 one bit
coding metasuface. We replace the batch normalization [66]
with the instance normalization [67] in the Resnet34 network
to prevent interaction among batches. Then, the holographic
image generated by Jφ is calculated by Eq. (7) and divided by its
maximum value to keep its value in the range [0,1]; next, it is
sent into the discriminator to calculate the Wasserstein distance
[57] between itself and the target holographic image. The MSE
is also calculated at the same time as another index, indicating
the similarity between the generated holographic image and tar-
get holographic image. So, the generator together with the EM
forward propagation process makes up the structure of the VAE
[55], whose optimization target is making the output image as
similar as possible to the input image. The usage of the unsu-
pervised structure VAE gets us out of the trouble of making the
marked training dataset, whose data must be organized in pairs
with the target holographic image and its corresponding coding
pattern (metasurface hologram) generated by iterative algo-
rithms like the GS algorithm. Besides, the multiplicity-
solution property of the iterative algorithm will cause one-
to-many problems in the marked training dataset and makes
the training process difficult to converge.

The discriminator adopts the structure of cGAN [63] and
WGAN [61], which is responsible for calculating the approxi-
mate Wasserstein distance between the generated holographic
image and the target holographic image. It will be trained in the
adversarial process towards the generator and improve the im-
aging quality of the generated holographic image.

C. Backpropagation Process
The mainstream deep learning platform such as TensorFlow
and Pytorch could not directly deal with the complex values,
which will cause difficulty in the backpropagation process from
loss function to Jφ. Thus, we need to derive the backpropaga-
tion partial derivative equation from the generated holographic
image (the amplitude of E ) to Jφ to get rid of the calculation of
complex values, which is expressed as (using numerator layout)

Fig. 2. Schematic diagram of the proposed VAE-cWGAN. The generator together with the EM propagation process makes up the VAE structure.
Two kinds of distance criteria (MSE and Wasserstein distance) are used to improve the imaging quality of the generator.
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∂jEj
∂Jφ

� jEj⊙−1⊙Re

�
E�⊙

∂E
∂Jφ

�
� jEj⊙−1⊙Re�E�⊙Wr �, (8)

where the superscript notation⊙−1 means taking the reciprocal
element-wisely and � means taking the conjugate matrix.
Then, the backpropagation process from loss function to Jφ

can be calculated by real values,

∂Loss
∂Jφ

� ∂Loss
∂jEj ·

∂jEj
∂Jφ

: (9)

D. Design of Loss Function
We merge the MSE loss and Wasserstein distance as our final
loss function. The MSE loss and Wasserstein distance are both
criterions to indicate the distance between two distributions.
Although using the Wasserstein distance evaluation function
alone could also reach an equally good result, we still add
the MSE evaluation to the loss function of the generator be-
cause the MSE evaluation could act as the ‘lubricant’ for the
training process to accelerate and stabilize the convergence
of the generator and discriminator. The discriminator cannot
tell fake samples apart from real ones at the beginning of
the training process; thus, it should be trained to learn a
K-Lipschitz continuous function [60,61] so as to compute
the Wasserstein distance. Therefore, at the beginning of train-
ing process, the generator is not able to get any effective guides
from the discriminator for the updates of parameters, which
would raise the risk of ‘mode collapse’. Luckily, the MSE evalu-
ation function could help to guide the updates of the generator
before the discriminator is well trained so as to prevent the gen-
erator from the ‘mode collapse’. This is the reason why we add
it into the final loss function of the generator.

The MSE loss is described as

MSE � 1

N
sum��jEj − jEt j�⊙2�,

∂MSE

∂jEj � 2

N
��jEj − jEt j��T , (10)

where jEt j represents the target holographic image and super-
script ⊙2 means element-wise square.

Wasserstein distance [59] indicates the minimum
movement for changing one distribution P1 to another distri-
bution P2:

W �P1,P2� � inf γ∼Π�P1,P2�E�x,y�∼y�kx − ykp�, (11)

where Π�P1,P2� represents the set of all of the possible joint
distributions between P1 and P2, and notation k · kp means p-
norm. The Wasserstein distance is a more appropriate criterion
to indicate the distance between two distributions. Figure 3(a)
shows the three sets consisting of discrete sequences sampled
from distributions P1, P2, and P3, respectively,
defined by

∀ sequence ∈ P1, sequence � �x, 0, 0, 0, 0, 0, 0, 0�
and x ∼ U �0, 1�,

∀ sequence ∈ P2, sequence � �0, x, 0, 0, 0, 0, 0, 0�
and x ∼ U �0, 1�,

∀ sequence ∈ P3, sequence � �0, 0, 0, 0, 0, 0, x, 0�
and x ∼ U �0, 1�:

The mathematical expectation of p-norm distance between
the discrete sequences sampled from distributions P1 and P2 is
the same as that between P1 and P3. However, it is obvious that

Fig. 3. (a) Three discrete-sequence sets sampled from distributions P1, P2, and P3, respectively. (b) The target holographic image is input to the
trained generator. (c) The generated holographic image [corresponding to Fig. 3(b)] output by a generator trained only using the MSE loss. (d) The
generated holographic image output by a generator trained using MSE loss and Wasserstein distance simultaneously.
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P2 is more visually similar to P1 than P3. Thus, the p-norm
criterion may fail to indicate the distance between two sparse
distributions, just as demonstrated in Figs. 3(b) and 3(c), in
which the target holographic image [Fig. 3(b)] can be expressed
as a sparse matrix, making it difficult to find the direction of
optimization and fall into local minimum with the generator
trained using only MSE loss, and eventually output a wrong
holographic image [Fig. 3(c)]. Luckily, the Wasserstein distance

could help denote this distribution difference, and the gener-
ator trained by the Wasserstein distance could generate the cor-
rect holographic image [Fig. 3(d)].

For the loss function of the discriminator, we use the loss
function of WGAN [61] to simulate the calculation of
Wasserstein distance and introduce the concept of cGAN
[63] to match the target holographic image with the generated
holographic image:

Fig. 4. Generated holographic images at each training time corresponding to the valid target holographic images. One time of training is when
training generator has three iterations after the training discriminator has one iteration.

Fig. 5. Testing results of our proposed intelligent metasurface hologram system. The target holographic images are randomly chosen from the
testing MNIST dataset or images of handwritten letters. The simulation holographic images are calculated by Eq. (7) with the binarized current
vectors Jφ output by the generator. The experimental holographic images are radiated by our 1 bit coding metasurface configured with the cor-
responding metasurface holograms generated by the binarized current vectors Jφ from the generator.
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Loss_D � E
x̃∼Pg jPr

�D�x̃�� − E
x∼Pr jPr

�D�x��

� λ E
x̂∼Px̂

��k∇x̂D�x̂�k2 − 1�2�, (12)

where Pg and Pr represent the distributions of the generated
holographic images and target holographic images, respectively.
Meanwhile, by adding the MSE loss in Eq. (10), our loss func-
tion for the generator could be expressed as

Loss_G � − E
x̃∼Pg jPr

�D�x̃�� �MSE: (13)

Figure 3(d) shows the generated holographic image output
by the joint optimization of MSE loss and Wasserstein
distance, which matches well with the target holographic image
[Fig. 3(b)] and demonstrates the necessity of the mixed distance
criterion.

Fig. 6. Comparison results between the VAE-cGAN and GS algorithms. The top half presents the simulated results of the generated holographic
images radiated by metasurface holograms designed by our VAE-cGAN and GS algorithms, respectively. Here, GS1, GS2, and GS3 are the generated
holographic images obtained by running the GS algorithm three times in sequence. The values of MSE and PSNR evaluations are marked below the
corresponding holographic images. The bottom half of this figure illustrates the statistical frequency histograms of the holographic image quality in
terms of MSE and PSNR.
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3. RESULTS AND DISCUSSION

We use the images from the Modified National Institute of
Standards and Technology (MNIST) data sets of handwritten
digits [68] as the target holographic images to train our VAE-
cGAN. In accordance with tradition, we divide the images of
the MNIST database into three parts: training, validating, and
testing datasets, with 35,000, 5000, and 10,000 samples re-
spectively. The images from the MNIST database are reshaped
to 40 × 40 and binarized before being input to the generator or
discriminator. Because the discriminator is much more easily
trained than the generator, we train the generator three times
before training the discriminator. The Adam optimizer is used
with an initial learning rate of 3 × 10–4, and the size of batch is
64. We use the Pytorch deep learning platform to construct our
VAE-cGAN and run the program on a graphics processing unit
(GPU) (Nvidia Quadro RTX 8000). The generator converges
and becomes stable after about 9000 training iterations, and the
total time consumption is about 2 h. The generated holo-
graphic images at each training time when giving the same
64 valid target holographic images are shown in Fig. 4, dem-
onstrating that the generated holographic images successfully
converge to the target holographic images when the training
process goes on.

For the experimental process, we input a testing target holo-
graphic image into the trained generator and get its output cur-
rent vector Jφ. Then, the generated Jφ is binarized to ‘1’ or ‘−1’,
which corresponds to the reflection phase of 0 or π (the coding
meta-unit state of 0 or 1), respectively. The simulated holo-
graphic images are calculated by Eq. (7) with binarized current
vectors Jφ. The coding metasurface [Fig. 1(b)] is set using an
FPGAwith the coding meta-unit states generated from Jφ. Last,
we measure the holographic images radiated by the digital cod-
ing metasurface holograms in a standard microwave chamber.

Figure 5 shows some of the measured results. The target
holographic images of handwritten digits ‘0’, ‘3’, and ‘7’ in
Fig. 5 are randomly chosen from the testing MNIST dataset,
which means that they have not participated in the training
process of the generator. The high imaging quality of the sim-
ulation and experimental holographic images indicates that the
generator possesses the abilities of generalization. Furthermore,
we use extra testing holographic images of handwritten letters,
which have different features from the handwritten digits, to
further verify the generalization ability of the generator. The
randomly selected testing results corresponding to the target
holographic images of handwritten letters ‘A’ and ‘B’ are also
presented in Fig. 5, indicating that the generator could handle
well these handwritten letters and proving the generality of our
intelligent metasurface hologram system.

The comparison results between VAE-cGAN and GS algo-
rithms are provided in Fig. 6, in which the top half presents the
simulated results of the generated holographic images radiated
by the metasurface holograms designed by VAE-cGAN and GS
algorithms, respectively. Since the results of the GS algorithm
are inconsistent due to its random parameters initialization, for
one target holographic image, we run the GS algorithm
three times and get three holographic images indicated by
GS1, GS2, and GS3, respectively. The values of MSE and peak
signal-to-noise ratio (PSNR) evaluation are marked below the

corresponding holographic images, showing that the generated
holographic images from our VAE-cGAN generally have
smaller MSE and larger PSNR evaluation values than those
from the GS algorithm. The bottom half of Fig. 6 illustrates the
statistical frequency histograms of the holographic image qual-
ity in terms of MSE and PSNR, which are counted using the
generated holographic images corresponding to 10,000 target
images from the testing dataset of handwritten digits.
Considering the inconsistency of the GS algorithm, for each
target holographic image, the GS algorithm is run three times,
and the smallest MSE value and the largest PSNR value are
recorded as the final statistical results.

The mean MSE and PSNR values of our VAE-cGAN evalu-
ated with the whole testing dataset are 0.0382 and 14.33, re-
spectively. Compared with 0.0407 (mean-MSE) and 14.05
(mean-PSNR) of the GS algorithm, our VAE-cGAN shows
a better capability in searching the global optimum than the
GS algorithm.

4. CONCLUSION

We propose a new intelligent non-iterative approach (VAE-
cGAN) based on deep learning methods for metasurface holo-
grams. The usage of an unsupervised VAE structure makes our
system easily trained from scratch, and the introduction of
Wasserstein distance criterion improves the imaging quality
of holographic images. After the VAE-cGAN is well trained,
we just need to use the generator part to generate the coding
patterns (metasurface holograms) corresponding to the target
holographic images. The non-iterative structure of the gener-
ator enables the realization of holographic imaging with high
quality and high efficiency, which are validated by both simu-
lation and experimental results.

When deploying our trained generator on a neural network
chip, our system could become a real-time holographical imager
to rapidly generate the desired holographic images. It could be
expected that our intelligent metasurface hologram system
could become an efficient tool for microwave or even optical
holograms [69], and more valuable applications could be ex-
plored in wireless communications [32], smart EM environ-
ment, health monitoring [51,70], and so on.
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